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Abstract

This paper reviews the development of semi-empirical models which calculate the turbulent boundary layer wall pressure

frequency spectra. Various models published from the late 1960s to 2004 are reviewed, and the pressure spectra calculated

using these models are compared to measured data obtained at various flow conditions at a substantially wide range of

Reynolds number and boundary layer thickness. The experimental data consists of flows on flat surfaces in air and

cylindrical surfaces in water. A summary of the results on the applicability and limitation of each of the models compared

is discussed. A model is identified that provides a good overall prediction of the frequency spectra for all cases evaluated.

The readers may use the information presented to choose a model appropriate for their specific applications.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Analyses of the structural response to the pressure fluctuations of turbulent boundary layer (TBL) flows
have been investigated extensively over the past 50 years. The spatial and temporal characteristics of the
forcing function are usually expressed in terms of a second moment of the pressure field statistics, such as the
space–time correlation function or its Fourier conjugate, the wavevector-frequency spectrum. The partial
(temporal) Fourier transform of the space–time correlation function, the cross-spectral density function, is
also frequently used. Research on the wavenumber-frequency spectrum prior to 1996 was comprehensively
reviewed by Bull [1].

When the Corcos-type cross-spectrum [1,2] or its corresponding wavevector-frequency spectrum is used to
model a homogeneous turbulent flow, the point frequency spectrum, fp(o), is uniform in space and is the
common separable factor from either the cross-spectral term or the wavevector term. That is, the
wavenumber-frequency spectrum Fp(k1,k3,o) on the wavevector plane k ¼ (k1,k3) can be expressed as [3]

Fpðk1; k3;oÞ ¼ fpðoÞðUc=oÞ
2f ð ~k1; ~k3Þ, (1)
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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where k1 and k3 are the streamwise and spanwise wavenumber, Uc is the convection velocity, ~k1ð¼ k1Uc=oÞ
and ~k3ð¼ k3Uc=oÞ are the dimensionless wavenumbers, and f ð ~k1; ~k3Þ is a normalized dimensionless
wavevector spectrum. Since Fp(k1,k3,o) is the Fourier transform of the space–time correlation function, by
definition [1,3],

fpðoÞ ¼
Z 1
�1

Z 1
�1

Fpðk1; k3;oÞdk1 dk3 (2)

and Z 1
�1

Z 1
�1

f ð ~k1; ~k3Þd ~k1 d ~k3 ¼ 1. (3)

In this paper fp(o) is considered to be a double-sided spectrum, and the mean square pressure /p2S is,
therefore, the integrated sum of fp(o) over o from �N to N. In the case of the Corcos spectrum,

f ð ~k1; ~k3Þ ¼ ða1a3=p2Þ=f½a21 þ ð1� ~k1Þ
2
�½a23 þ ~k

2

3�g, (4)

where the constants a
1
and a

3
are the longitudinal and lateral decay rates of the correlation, which typically

range from 0.10 to 0.12 and 0.7 to 1.2, respectively. This spectrum has a peak value of (a1a3p
2)�1, which occurs

at ð ~k1; ~k3Þ ¼ (1,0), or at (k1,k3) ¼ (kc,0), where kc( ¼ o/Uc) is the convection wavenumber. The spectral value
at ð ~k1; ~k3Þ ¼ (0,0) is equal to a1=½p2a3ð1þ a21Þ�. Corcos’s spectrum is considered to be low-wavenumber white,
since there are only slight variations of the spectral levels in the low-wavenumber region, where
|(k1,k3)|o0.25kc. The ratio between Corcos’s low-wavenumber spectrum and the spectral peak value in the
convective ridge is about a21=ð1þ a21Þ � 0:01, which is about two orders of magnitude larger than the values
reported from experiments [4].

In a study to determine the effects of different models of the wavenumber-frequency spectra on sound
radiated by turbulent boundary layer driven rectangular plates, Graham [3] used several models of f ð ~k1; ~k3Þ in
his analysis. Although the radiated sound power from a structure is proportional to the forcing point
frequency spectrum, fp(o), Graham’s sound powers were normalized by it. Therefore, the effect of the
different choice of models for fp(o) was not discussed by Graham. This paper compares various models for
the determination of fp(o), which is also critical for computing the actual sound power using the method
presented by Graham and others.

Traditionally, the frequency spectrum is determined from empirical curves plotted according to certain
scaling laws, where the dimensionless spectral density is represented as a function of dimensionless frequency.
For example, fp(o)UN/q2d* is frequently plotted as a function of od*/UN, where UN is the free stream
velocity, q( ¼ 1/2rUN

2 ; r ¼ fluid density) is the local dynamic pressure, and d* is the boundary layer
displacement thickness. In this example, q is used as the pressure scale, and d*/UN as the time scale. Some
earlier empirical models, e.g., the Cockburn and Robertson [5] model, reflect data expressed in these scales.

Wall shear stress, tw, is more frequently used as a pressure scaling factor in conjunction with d*/UN, d/UN,
d*/u*, d/u* or n=u2

� as the time scale (where d is the boundary layer thickness, u� ¼
ffiffiffiffiffiffiffiffiffiffi
tw=r

p
is the friction

velocity, and n is the kinematic coefficient of viscosity). Scaling issues have been elaborately discussed by Blake
[4], Farabee and Casarella [6], Keith et al. [7], Bull [1], Smol’yakov [8], Goody [9], and others. There is no
single scaling that leads to a satisfactory collapse of experimental data at all pertinent frequencies. According
to the work of the above authors, the use of different scales to collapse data in different frequency regions are
shown in Fig. 1 and summarized as follows:
(1)
 In the low-frequency region, od*/UNp0.03 (or od/u*p5), the spectrum varies as o2. Either q or tw may
be used as the pressure scale, and d*/UN is used as the time scale, e.g., fp(o)UN/q2d* ¼ f1(od*/
UN) ¼ constant� (od*/UN)2.
(2)
 In the mid-frequency region, 5pod/u*p100, which includes the spectral peak occurring approximately at
od/u* ¼ 50; tw is used as the pressure scale and d/u* as the time scale; e.g., fpðoÞu�=t

2
wd ¼ f 2ðod=u�Þ.
(3)
 The universal range (or overlap region), 100pod/u*p0.3(u*d/n), exists when Reynolds number u*d/n4333
(or RyX3500 according to Smol’yakov [8], where Ry ¼ UNdy/n, dy ¼ momentum thickness). Both inner-
and outer-layer scaling can be used to make the data collapse, i.e., ofp(o)tw

2
¼ f3 ¼ constant. This implies
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Fig. 1. General spectral characteristics of a TBL wall pressure spectrum at various frequency regions.
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fp(o) varies as o
�1 in this range, but recent data analyzed by Goody [9] and Smol’yakov [8] show it may

vary as o�0.7 and o�1.11, respectively.

(4)
 In the high-frequency region, 0:3pon=u2

�, the spectrum is influenced by viscosity and scaled on inner-layer
variables. Usually, tw is used as the pressure scale and n=u2

� as the time scale, e.g., fpðoÞu
2
�=t

2
wn ¼ f 4ðon=u2

�Þ

(the spectrum varies from o�1 to o�5).
These distinct spectral characteristics are depicted in Fig. 1, which indicates that a suitable descriptive model
must be a function of multiple scaled variables, which will predominantly behave as fi(i ¼ 1, 2, 3, 4) in each of
the four regions of frequencies. Semi-empirical models for calculating the frequency spectrum have been
proposed by several investigators. The reason for using the term ‘‘semi-empirical models’’ is because all
models discussed hereafter were fitted empirically with some degree of theoretical guidance. The earlier models
by Maestrello [10], Cockburn and Robertson [5] and Efimtsov [11] are single scale models. A later Efimtsov
model [12] may be considered as a multiple scale model since it includes a Reynolds number dependency. The
more comprehensive multiple scale models were published recently by Smol’yakov [8] and Goody [9]. This
paper provides an overview on the progress of model development and compares some of these models, in
terms of their similarities, differences and limitations in predicting spectral behavior and level, using measured
data as a reference. Data obtained at various flow conditions (flows on flat surfaces in air and cylindrical
surfaces in water at a substantially wide range of Reynolds number and boundary layer thickness) will be used.

Nine semi-empirical models are chosen for comparison in the following section although several are paired
in their discussion because of similarities:
(1)
 Maestrello [10] model (1969)

(2)
 Cockburn–Robertson [5] and Efimtsov [12] models (1974 and 1984, respectively)

(3)
 Witting [13] model (1986)

(4)
 Chase [14] and Chase–Howe models [15,16] (1980 and 1987, respectively)

(5)
 Smol’yakov–Tkachenko [17] and Smol’yakov [8] models (1991 and 2000, respectively)

(6)
 Goody [9] model (2004).
These models do not constitute an exhaustive list of all models in the literature; they are chosen because of
their historical significance and because they are frequently referenced by other researchers. We hope this
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paper provides an impartial reference for the practicing engineer regarding the relative strengths and
weaknesses of the various models.

2. Models of wall pressure frequency spectrum

2.1. Maestrello model

The Maestrello [10] model is, perhaps, the earliest semi-empirical model published. This model was
developed based on measurements on the side wall of a supersonic wind tunnel. The side wall window was
modified to accommodate a rigid steel plate which supported the instrumentation required for measurements.
Measurements were made in the region of zero pressure gradient. Conventional zirconate ceramic disks as well
as capacitance transducers with diameters of 1.5 and 2.3mm, respectively were used. Pressure data below
800Hz were rejected due to acoustic interference in the tunnel. The data in the range between 0.8 and 200 kHz
measured at Mach numbers of 1.42, 1.98, 2.99 and 3.98 were plotted in an outer variable scale, i.e., fp(o)UN/
(/p2Sd) versus od/UN. The plotted data compared favorably with other published data obtained from
measurements made at highly subsonic incompressible flows. An empirical model which is the best fit of the
data was given as follows [10]:

fpðoÞU1=ðhp
2idÞ ¼

X4
n¼1

Ane
�Knðod=U1Þ, (5)

where

A1 ¼ 0:044; K1 ¼ 0:0578;

A2 ¼ 0:075; K2 ¼ 0:243;

A3 ¼ �0:093; K3 ¼ 1:12;

A4 ¼ �0:025; K4 ¼ 11:57:

These constants are used for determining the spectral peak value, which occurs at od/UNE1.5 (or at od*/
UNE0.2), and controlling the rate of roll-off from the peak.

2.2. Cockburn– Robertson and Efimtsov models

In an investigation of the vibration response of spacecraft shrouds to in-flight fluctuating pressures,
Cockburn and Robertson [5] utilized the following empirical equation, expressed in outer variable scaling, for
the frequency spectrum of wall pressures at transonic and supersonic speeds:

fpðf ÞU1

q2
1d

¼
hp2i=q2

1

ðdf 0=U1Þ½1þ ðf =f 0Þ
0:9
�2
, (6)

where /p2SE[0.006/(1+0.14M2)qN]2, f is the circular frequency, M the local Mach number and f0 the
characteristic frequency: f0 ¼ 0.346 UN/d. The spectrum has a maximum at zero frequency and it drops off
faster when frequencies exceed f0. Mach number affects only the mean square pressure and this effect becomes
insignificant at transonic and lower speeds. At high frequencies (when fbf0), Cockburn and Robertson’s
model varies as o�1.8, which is quite different from the spectral characteristics shown in Fig. 1.

Based on the exhaustive experimental data available from measurements of wall pressure fluctuations in
zero-pressure gradient turbulent boundary layers on aircrafts in wind tunnels, Efimtsov [12] proposed the
following Reynolds number dependent model for the single-sided frequency spectrum:

fpðoÞ=ðr
2u3
�dÞ ¼ ab½ð1þ 8a3 Sh2

Þ
1=3
þ abReðSh=ReÞ10=3��1, (7)

where, a ¼ 0.01, Re ¼ du*/n, b ¼ [1+(3000/Re)3]1/3 and Sh ¼ od/u*. Unlike his previous model [11] which is
valid only for od/u*o1.3Re7/8, the new model is valid for all practical range of Re. Obviously, at high
frequencies, the predicted spectra will decrease po�10/3.
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2.3. Witting model

Witting [13] developed a theoretical wavenumber-frequency spectral model based on a stochastic model of
turbulent burst/sweep events, where he considered each burst and sweep as an independent event and as a
dipole that moves with the local mean flow. He derived a Bernoulli relationship that connects the wall
fluctuating pressure from an individual event to the fluctuating velocity. Based on the result of Fourier
analysis, he assumed a form of the wall pressure wavevector-frequency spectrum contributed by the
fluctuating velocity at a distance, d, from the wall. The overall wavenumber-frequency spectrum is then
obtained by summing, according to an assumed probability density function, over a range of d: from the inner
length scale dmin to the outer length scale dmax, where dmin and dmax may be expressed as a constant ratio to d*,
e.g., dmin ¼ 0.1d* and dmax ¼ 4d*. The frequency spectrum is then obtained by integrating the wavenumber-
frequency spectrum over the wavevector plane:

fpðoÞ ¼
ð16=3pÞhpi2

oj j½1þ 2=ð3C2Þ� lnðdmax=dminÞ

Z odmax=Uc

odmin=Uc

x3K1ð2xÞdx (8)

where hp2i ¼ 0:015r2U2
cu2
� is the mean square pressure, C ¼ 8, and K1 is a modified Bessel function. Witting’s

model is not a simple semi-empirical model. The spectrum is an integral of a special function with frequency-
dependent integration limits. As will be shown later, Witting’s model reflects the spectral features similar to
those shown in Fig. 1.
2.4. Chase and Chase– Howe models

A comprehensive descriptive semi-empirical model for wavenumber-frequency spectrum was published by
Chase [14]. This model was further improved in a follow-up paper by the same author [15]. The Chase
frequency spectrum, fp(o), is obtained by integrating his wavenumber-frequency spectrum over the
wavevector plane according to Eq. (2). The latest version [15] of the frequency spectrum is expressed as
follows:

fpðoÞ ¼ r2u4
�o
�1½aþgMa�3M ð1þ m2Ma2MÞ þ 3pCTa�1T ð1þ a�2T Þ�, (9)

where a2M ¼ a2T ¼ 1þ ðbod=UcÞ
�2, CM ¼ 0.1553, CT ¼ 0.00476, b ¼ 0.75, mM ¼ 0.176, a+ ¼ 2p(CM+CT)

and gM ¼ CM/(CM+CT). At the low-frequency limit, this spectrum approaches a constant rather than varying
as o2.

A similar version of Chase’s model [15] was presented by Howe [16] in a rather concise manner, i.e.,

fpðoÞ ¼ r2u4
�o
�1ðod�=U1Þ

3
½a2p þ ðod�=U1Þ

2
��3=2; ap ¼ 0:12. (10)

This spectrum, unlike that in Eq. (9), is proportional to o2 at low frequencies. Eq. (10) is the so-called
Chase–Howe model (Goody [9]). However, both the Chase and Chase–Howe spectra vary as o�1 at high
frequencies (universal range and beyond). The integration of Eqs. (9) and (10) over o from �N toN diverges
and does not yield the mean square pressure. Since these models do not decay faster than o�1, such as o�7/3 or
o�5, at high frequencies, their applicability is apparently limited to frequencies near or below the universal
range cutoff, i.e., on=u2

�p0:3.
According to the form presented by Howe [16], the normalized Chase [15] wavevector-frequency spectrum

in the hydrodynamic domain (|k|Xo/c; c ¼ speed of sound), can be expressed as follows:

f ð ~k1; ~k3Þ ¼ ½fpðoÞ�
�1ðUc=u�Þ½b

2
ð1� ~k1Þ

2
þ ~k

2
þ ðbod=UcÞ

�2
��5=2

� CM
~k
2

1 þ CT
~k
2 b2ð1� ~k1Þ

2
þ ~k

2
þ ðbod=UcÞ

�2

~k
2
þ ðbod=UcÞ

�2

" #
, (11)

where b ¼ Uc/3u* and ~k
2
¼ ~k

2

1 þ
~k
2

3. Chase’s low-wavenumber spectrum varies as ~k
2
, and becomes much lower

than Corcos’s spectrum when |(k1,k3)|5kc (see Graham [3]).
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2.5. Smol’yakov– Tkachenko and Smol’yakov models

In a paper devoted to discussing the cross-spectra and the corresponding wavevector-frequency spectra of
the turbulent pressures, Smol’yakov and Tkachenko [17] utilized the following model for their frequency
spectrum:

fpðoÞ ¼ 5:1ðt2wd�=U1Þ=½1þ 0:44ðod�=U1Þ
7=3
�, (12)

which is an approximate model based on the work by Tkachenko and Marshov [18]. This model depicts a flat
spectrum in the low- and mid-frequency regions in a way similar to that of Cockburn and Robertson [5], and
then decays as o�7/3 at high frequencies.

Independent of the model shown in Eq. (12), Smol’yakov [8] proposed a new model using different scaling
variables for different frequency regions. This model was based on a thorough analysis of his theoretical model
of the wavenumber-frequency spectrum and a diverse group of data reported in the literature. Three
distinctive characteristic frequency ranges, determined by dimensionless frequency, o ¼ on=u2

�, are established
for Ry41000:

fpðoÞ ¼ 1:49� 10�5R2:74
y o2ð1� 0:117R0:44

y o1=2Þ=½u2
�=ðt

2
wnÞ�

when ooo0,

fpðoÞ ¼ 2:75o �1:11f1� 0:82 exp½�0:51ðo=oo � 1Þ�g=½u2
�=ðt

2
wnÞ�

when o0ooo0:2,

fpðoÞ ¼ ð38:9e
�8:35o þ 18:6e�3:58o þ 0:31e�2:14oÞ

� f1� 0:82 exp½�0:51ðo=o0 � 1Þ�g=½u2
�=ðt

2
wnÞ�

when o40:2, (13)

where o0 ¼ 49:35R�0:88y . In the low-frequency region, ooo0, the pressure spectrum is proportional to o2. In
the mid-frequency region, o0ooo0:2, the spectrum peaks and then rolls off to the ‘‘universal’’ range, where
fp(o)po�1.11 instead of fp(o)po�1 as predicted by the Chase model. In the high-frequency region, o40:2,
fp(o) varies in an exponent form rather than a power-law form, although different portions of the exponent
can be approximated in the power-law dependencies of the form o�m with the increase of the exponent m as
frequency is increased.

2.6. Goody model

Using the Chase–Howe model [16], Eq. (10), as the starting point, Goody [9] incorporated the scaling
behaviors shown in Fig. 1 and the spectral features indicated by the data obtained from seven research groups
to obtain the following semi-empirical formula:

fpðoÞU1
t2wd

¼
C2ðod=U1Þ

2

ðod=U1Þ
0:75
þ C1

� �3:7
þ C3R

�0:57
T ðod=U1Þ

� �7 , (14)

where C1, C2 and C3 are empirical constants, RT ¼ ðd=U1Þ=ðn=u2
�Þ is the ratio of the outer to inner boundary

layer time scale. The value of C1 and C3 recommended by Goody are 0.5 and 1.1, respectively. The value for
C2 ¼ 1.5 which will be used here is one-half of Goody’s suggested value (C2 ¼ 3) to account for the double-
sided spectra used in this paper versus Goody’s single-sided spectrum. The ratio between C1 and C3R�0:57T

determines the size of the universal range (overlap region), and this region may be very narrow at low
Reynolds number flows, since RTp(u*d/n). This model thus reflects the Reynolds number trends that exist in
the measured data.

The spectrum represented by Eq. (14) increases as o2 in the lowest frequency region. After the peak region,
it decays as approximately o�0.7 in the middle frequency region (the universal range). In the highest frequency
region, fp(o) decays as o

�5. This model compares well with experimental data over a large range of Reynolds
numbers, 1400oRyo23400. Goody claims that this model can be confidently extrapolated to flows at



ARTICLE IN PRESS
Y.F. Hwang et al. / Journal of Sound and Vibration 319 (2009) 199–217 205
Reynolds number higher than the data set surveyed, since the model is fitted (or calibrated) with a Reynolds
number dependent factor, i.e., RT ¼ (u*/UN)(u*d/n).

3. Comparison of measured and predicted spectra

The calculated frequency spectra using the above models are the spectra that would be measured by a point
sensor, which cannot be used to compare directly with the spectra measured by a finite-size pressure sensor
because of the effect of spatial averaging over the sensor area. The wall pressure spectrum measured by a
finite-size circular pressure sensor, fM(o), can be computed numerically (Blake [4]; Capone and Lauchle [19])
as follows:

fM ðoÞ ¼
Z 1
�1

Z 1
�1

Fpðk1; k3;oÞHðkaÞdk1 dk3, (15)

where H(ka) ¼ [2J1(ka)/ka]2 is the wavenumber sensitivity function of a circular sensor with uniform pressure
sensitivity of radius a at the wavenumber k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 þ k2

3

q
. By substituting Eq. (1) into Eq. (15), the ratio

between the measured and the theoretical point spectrum can be predicted by evaluating

fMðoÞ=fpðoÞ ¼
Z 1
�1

Z 1
�1

f ð ~k1; ~k3ÞHðkaÞd ~k1 d ~k3. (16)

The ratio fM(o)/fp(o) is the so-called Corcos attenuation factor, which is used to predict the theoretical
point spectra when the spectra measured by finite sensors are given, or vice versa, to predict the spectra
measured by finite sensors when the theoretical point spectra fp(o) are given.

Both Eq. (4) (the Corcos spectrum) and Eq. (11) (the Chase spectrum) may be used for calculating fM(o)/
fp(o). For all finite values of k, H(ka)-1 as a-0. This leads to no attenuation, i.e., fM(o)/fp(o) ¼ 1 when
a ¼ 0, since

R1
�1

R1
�1

f ð ~k1; ~k3Þd ~k1 d ~k3 ¼ 1. Therefore, when small sensors are used, the calculated fM(o)/
fp(o) at low frequencies will not be influenced significantly by the choice of model for f ð ~k1; ~k3Þ. However,
when the size of the sensor is larger or the frequency of interest is higher, the calculated fM(o)/fp(o) will be
influenced by the choice of the model due to the differences in the low-wavenumber spectra.

Fig. 2 shows the calculated values of fM(o)/fp(o) using the Corcos and Chase models for circular sensors
of 1mm and 1 cm diameter. Also shown are the attenuation factors extrapolated from the data tabulated by
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Corcos [2] (shown by symbols O and x, for 1 cm and 1mm sensors, respectively). The flow conditions used in
the calculation are based on Schewe’s [20] experiment, where UN ¼ 6.3m/s, d ¼ 3 cm, d* ¼ 4.6mm and
u* ¼ 0.28m/s. These conditions are used to determine the approximate frequency-dependent convection
speed, Uc(o) ¼ [0.6+0.3exp(�0.89od*/UN]UN, and the wavenumber-frequency spectra. The attenuation
factors calculated by using the Corcos and Chase models differ insignificantly when the frequency is low and
the size of sensor is small. However, the differences become more noticeable as the frequency increases or the
size of the sensor becomes larger.

In the following comparison of the measured and predicted spectra using the various semi-empirical models,
the measured data are the sensor data corrected with attenuation factors. Two sets of measured data are
shown: one is corrected by using Corcos’s wavenumber spectral model while the other is corrected by using the
Chase model. The uncorrected experimental data are also shown to indicate the amount of correction being
made.

In each measurement condition, the measured and predicted spectra were determined in the actual
frequency and pressure scales first and then converted to dimensionless forms: dimensionless spectra
½fpðoÞ=r

2U3
1d�� versus dimensionless frequency [od*/UN]. The relative differences among the spectra

compared under the same flow conditions at the actual pressure and frequency units will be the same as those
compared at any form of the dimensionless pressure and frequency (either in inner or outer scales) as discussed
in Section 1. Although the dimensionless spectral densities and frequencies (shown in outer variable scales)
used here do not universally collapse data at all frequencies under different flow conditions, they may still
provide some useful cross comparison with other data published in the literature, especially in the low- and
mid-frequency ranges.

3.1. Frequency spectra in air on flat surfaces

Schewe’s [20] measurement of wall pressure spectra in a low-speed wind tunnel (UN ¼ 6.3m/s, Ry ¼ 1400)
serves as an example of very low Reynolds number flow. The pressure sensor used was 1mm diameter
(a ¼ 0.5mm), and the attenuation by the sensor size is less than 3 dB in the frequency range reported
(o2KHz). In the calculations, u* ¼ 0.28m/s, d* ¼ 0.46 cm as reported by Schewe, were used. The calculated
spectra and measured data are shown in Fig. 3. In this low Reynolds number flow, the measured spectrum as
shown in Fig. 3 indicates a rather narrow universal range, 0.6pod*/UNp1.2, where fp(o) decays
approximately as o�0.7. The decay rate increases with frequency and eventually the data show fp(o) decays
as o�5.

The pressure spectra on a flat surface reported by Farabee and Casarella [6] in a wind tunnel are measured
at several flow speeds. The data used here are measured at UN ¼ 15.5m/s, which is considerably higher than
that of Schewe’s experiment. With a special noise cancellation technique, they were able to measure the spectra
for frequencies as low as 1Hz. Their data, obtained by using a 0.79mm diameter flush mounted pinhole
microphone, are compared with predictions in Fig. 4. The boundary layer thickness (d ¼ 2.79 cm),
displacement thickness (d* ¼ 0.45 cm), friction velocity (u* ¼ 0.625m/s), and Reynolds number (Ry ¼ 3400)
measured by Farabee and Casarella are used in the calculation. The data reflect the spectral behaviors in all
frequency regions shown in Fig. 1. In the universal range, they show roughly a o�0.7 bevavior. In the high-
frequency region, the sensor size correction may be slightly overestimated since the corrected data show a o�4

rather than the generally believed o�5 behavior.
Both data sets mentioned above by Schewe [20] and Farabee and Casarella [6] were used by Goody and

Smol’yakov in the derivation of their spectral models. Although Smol’yakov [8] indicated that Farabee’s data
appeared in a technical report [21] were used, these same data were later published in a journal article by
Farabee and Casarella [6].

3.2. Frequency spectra in water on cylindrical surfaces

Using the data obtained from underwater measurements provides an opportunity to assess the
semi-empirical models at larger Reynolds number flows. The two in-water measurement cases that will be
used were obtained from cylindrical surfaces aft of the axisymmetric forebodies of buoyancy propelled
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Fig. 3. Comparison of pressure spectrum measured by Schewe [20] in a wind tunnel (Ry ¼ 1400, d* ¼ 0.46 cm) and predicted spectra using

the semi-empirical models. (a) Predicted spectra using model by ( ) Maestrello, ( ) Cockburn–Robertson, ( )

Efimtsov, ( ) Witting, ( ) Smol’yakov–Tkachenko. (b) Predicted spectra using model by ( ) Chase, ( )

Chase–Howe, ( ) Smol’ yakov, ( ) Goody. (J) measured data corrected with Chase, ( ) measured data corrected with

Corcos and (&) uncorrected measured data.
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test vehicles. In the first case, transition from laminar to turbulent flow was forced at the nose region to ensure
a fully developed turbulent flow at the measurement location (RxE1.04� 107). In this case, the measurement
point is in the upstream region of the vehicle and the boundary layer is thin. In the second case, the
measurement location is in the downstream region of a vehicle (the distance from the nose is about five times
the diameter of the vehicle, Rx ¼ 7.4� 107), where the Reynolds number is larger and the boundary layer is
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Fig. 4. Comparison of pressure spectrum measured by Farabee and Casarella [6] in a wind tunnel (Ry ¼ 3400, d* ¼ 0.45 cm) and predicted

spectra using the semi-empirical models. (a) Predicted spectra using model by ( ) Maestrello, ( ) Cockburn–Robertson,

( ) Efimtsov, ( ) Witting, ( ) Smol’yakov–Tkachenko. (b) Predicted spectra using model by ( ) Chase,

( ) Chase–Howe, ( ) Smol’yakov, ( ) Goody. (J) the measured data corrected with Chase, ( ) measured data

corrected with Corcos and (&) uncorrected measured data.

Y.F. Hwang et al. / Journal of Sound and Vibration 319 (2009) 199–217208
thick. These two cases, along with the two in-air cases, provide data at a wide range of Reynolds number and
boundary layer thickness. Measurements of the statistical properties of the fluctuating pressures on the
surfaces of this type of test vehicle were first reported by Bakewell [22]. His data compared favorably (in outer
variable scaling) with data obtained from wind tunnel measurements. The schematic and operation of the
vehicle were described in detail by Abarbanel et al. [23].
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In the first case, the tests were conducted in a deep ocean by Galib et al. [24], where transition from laminar
to turbulent flow was forced at the nose region (at the start of the contour) to ensure a fully developed
turbulent flow at the location of measurement. The pressure spectra were measured with a 5mm diameter
(effective diameter ¼ 3mm) hydrophone at UN ¼ 20.57m/s at the location where RxE1.04� 107 (x ¼ 1.25D;
where D is the diameter). In order to provide a smooth surface (to avoid surface impedance discontinuities),
the hydrophone was covered by a 3.2mm thick elastomer layer (blanket). The boundary layer displacement
thickness calculated by Galib et al. using a Transitional Analysis Program System (TAPS, Gentry and Wazzan
[25]) is 0.11 cm, which is close to that of 0.091 cm calculated by the flat plate equation [26]. Accordingly, other
parameters such as u* ¼ 0.7m/s, d ¼ 0.74 cm and dy ¼ 0.07 cm calculated from the flat plate equations are
believed to be sufficient for use as input parameters in the semi-empirical models.

In this measurement, the fluctuating pressures are not only attenuated by the size of the hydrophone but
also by the wavenumber filtering of an external elastomer layer. The attenuation or filtering effect by such an
elastomer layer, |t(k,o)|2, is expressed as the absolute square of the ratio between the pressure on a rigid wall
beneath an elastomer layer and the pressure on a rigid wall directly beneath the turbulent boundary layer.
Both pressures are subject to a reference incident wave expressed in terms of an evanescent velocity potential
which is launched from the boundary layer. The equation for calculating the pressure transfer function
(between the surfaces of an elastomer layer) as a function of frequency and wavenumber is shown in Eq. (A.9)
in the appendix, which is formulated in a way similar to the methods discussed by Chandiramani [27] and Ko
and Schloemer [28]. Calculations of the measured spectra with the combined attenuations by a hydrophone
and an elastomer layer are then determined by

fMðoÞ=fpðoÞ ¼
Z 1
�1

Z 1
�1

f ð ~k1; ~k3Þ tðk;oÞ
�� ��2Hðk1; k3Þd ~k1 d ~k3: (17)

Fig. 5 shows the estimated pressure attenuations by a 0.32 cm thick elastomer blanket (using density,
re ¼ 1050 kg/m3; dilatational wave speed, cl ¼ 1500m/s; and shear wave speed, cs ¼ 30m/s), a 0.3 cm diameter
sensor, and the combined attenuations by the elastomer layer and the sensor using both the Corcos and the
Chase spectra. This shows that the attenuations caused by the blanket are more severe than those by
the sensor. Differences between the calculated attenuations by the two spectral models below 2.5� 103Hz are
Fig. 5. The estimated pressure attenuations by a 1/8 in (3.2mm) thick elastomer layer (blanket), a 3mm diameter sensor, and the

combined attenuations by the blanket and the sensor using both the Corcos and Chase wavenumber-frequency spectra. Attenuations when

Corcos’s model is used: (- - - - -) sensor only, (– –) blanket only, (—) combination of sensor and blanket. Attenuations when Chase’s model

is used: ( ) sensor only, ( ) blanket only and ( ) combination of sensor and blanket.
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generally within 2–3 dB. Above 2.5� 103Hz the differences are on the order of 5 dB. Fig. 6 shows the
comparison between spectra predicted from the empirical models and that from measured data corrected with
the combined attenuations. The range of these data is not broad. However, it does cover the spectrum in the
peak region, and small portions of the low- and mid-frequency regions. The higher frequency region of the
underwater data will be covered in the next case.
Fig. 6. Comparison of the underwater pressure spectrum measured by Galib et al. [24] on a cylindrical surface (Rx ¼ 1.04� 107,

d* ¼ 0.1 cm) and predicted spectra calculated from the semi-empirical models. (a) Predicted spectra using model by ( ) Maestrello,

( ) Cockburn–Robertson, ( ) Efimtsov, ( ) Witting and ( ) Smol’yakov–Tkachenko. (b) Predicted spectra

using model by ( ) Chase, ( ) Chase–Howe, ( ) Smol’yakov, ( ) Goody. (J) the measured data corrected

with Chase, ( ) measured data corrected with Corcos and (&) uncorrected measured data.
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The second underwater case were data measured on a larger vehicle much further downstream (where
xE5D, UN ¼ 12.86m/s, Rx ¼ 7.8� 107) with a 2.54mm diameter flush mounted hydrophone (without an
elastomer layer). The measured spectra were used to monitor the TBL characteristics in a conformal array
experiment reported by Sherman et al. [29]. In this case, the boundary layer parameters are not known. The
location of transition from laminar to turbulent flow is estimated (according to Casarella et al. [30]) to be
approximately xED/2(RxE7.8� 106), which represents about 10% of the distance from the nose to the
measurement point. Based on this location of transition, the estimated virtual starting point of turbulence
occurs at approximately x ¼ 0.4D. Using this virtual starting point of turbulence, the calculated flow
parameters are u* ¼ 0.363m/s, d ¼ 8.6 cm, d* ¼ 1.08 cm and dy ¼ 0.78 cm and the resulting calculations of the
spectra are shown in Fig. 7. Although not shown here, there were no appreciable differences when the data
shown in Fig. 7 were compared to those calculated by assuming turbulence starts at the nose, since the
measurement point is so far downstream from the nose. Because of the very thick boundary layer
(d* ¼ 1.08 cm), the spectral peak occurs at a very low frequency (when od*/UNE0.2), which is below
the frequency range of available data, 0.5pod*/UNp25. The data in the peak and low-frequency regions
are contaminated and not shown here. However, the universal range of the spectrum is well covered by
available data.

3.3. Results of comparison between model predictions and measured data

The results of the comparison between the spectra predicted by the models and the corrected data obtained
from measurements, shown in Figs. 3, 4, 6 and 7 are summarized as follows. For reference purpose, the
experimental conditions for the data shown in these figures, and a few selected other experiments are
compared in Table 1.

The Maestrello model [10] predicts a reasonably accurate mid-frequency spectrum, especially in and near
the peak-frequency region. It overpredicts the low-frequency spectrum due to its slower roll-off from the peak
(about o0.6) in the low-frequency region. At frequencies above the peak frequency, the spectrum starts to roll
off slowly and then increases gradually until the roll-off is proportional to o�5. However, this model does not
characterize the distinct Reynolds number dependent feature in the universal range of the spectrum. Its
predicted spectra matches well with low speed in-air data (Fig. 3), where data show no noticeable universal
range. In high Reynolds number flows where the data have a large universal range (Figs. 4 and 7, for example),
this model severely underpredicts the spectral level when od*/UNb1.

The spectra predicted by the Cockburn–Robertson [5] model differ completely from the data not only in the
general spectral characteristics but also in levels. The most apparent shortcoming of this model is that there is
no clear spectral peak, except that this model rolls off gradually at different rates from their respective maxima
at zero frequency. This model, which was fitted to some specific high-speed flight test data, may not be
applicable to different flow environments, especially in the very low-speed flow data used here (at Mach
number nearly two orders of magnitude smaller).

The spectra predicted by the Efimtsov [12] are flat at frequencies below the spectral peak, and then
transition to o�10/3 behavior at high frequencies. It thus overpredicts the spectra below the peak frequency
and does not show the typical peak region spectral behavior. Except for this drawback, the model’s predicted
spectra above the peak frequency agree reasonably well with data.

Using the integration limits discussed in Section 2.3, the spectra predicted by Witting’s model [13] are close
to that of the data near the peak region. Its predicted spectrum matches reasonably well with the low speed in-
air data (Fig. 3). At higher speed, the predicted spectral levels in all other regions outside the peak region are
generally much lower than the data. Although Witting’s high- and low-frequency levels may be adjusted by
using different integration limits, the authors were unable to find a suitable combination of limits that would
yield a spectrum to match the data at all frequency ranges.

The spectra predicted by the Smol’yakov–Tkachenko model [17] are flat at frequencies below the spectral
peak, and then transition to o�7/3 behavior at high frequencies. Except in the very high Reynolds number
flow, such as that shown in Fig. 7 (Rx ¼ 7.74� 107), it overpredicts the spectra at low frequencies and mid
frequencies. The predicted spectra are either too high or too low in the universal range due to the roll-off of
o�7/3 in this range.
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Fig. 7. Comparison of the underwater pressure spectrum measured at Rx ¼ 7.74� 107 (with thick boundary layer, d* ¼ 0.93 cm) and

predicted spectra calculated from the semi-empirical models. (a) Predicted spectra using model by ( ) Maestrello, ( )

Cockburn–Robertson, ( ) Efimtsov, ( ) Witting and ( ) Smol’yakov–Tkachenko. (b) Predicted spectra using model

by ( ) Chase, ( ) Chase–Howe, ( ) Smol’yakov and ( ) Goody. (J) the measured data corrected with

Chase, ( ) measured data corrected with Corcos and (&) uncorrected measured data.
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The spectra predicted using the Chase [14,15] and Chase–Howe [16] models agree well with the data in the
mid-frequency region (0.15pod*/UNp0.6, including the peak). In the universal range, the spectra predicted
by the Chase and Chase–Howe models are lower (on the order of 1–6 dB) than the data due to the faster o�1

roll-off as opposed to the o�0.7 roll-off indicated by the data. In the high-frequency region, their predicted
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Table 1

Measurement conditions for data shown in Figs. 3, 4, 6 and 7 and those for other authors

Figure no. or authors Test facility Fluid UN (m/s) u* (m/s) d (cm) d* (cm) y (cm) Ry a (mm)

3 Wind tunnel Air 6.3 0.28 3.0 0.46 0.33 1.4� 103 0.5

4 Wind tunnel Air 15.5 0.625 2.79 0.45 0.33 3.39� 103 0.395

6 Buoyant body Water 20.6 0.7 0.74 0.1 0.07 12.2� 103 1.5

7 Buoyant body Water 12.9 0.363 8.6 1.08 0.78 70.5� 103 1.27

Bull and Thomas [34]a Wind tunnel Air 24.0 0.86 4.6 0.57 0.46 7� 103 0.375

Carey et al. [35]a Pipe flow Water 17.0 0.51 4.45 0.56 0.44 75� 103 0.89

Keith and Bennett [36]a Channel flow Water 6.1 0.2 1.88 0.23 0.20 13.4� 103 1.0

Wilmarth and Wooldridge [37]a Wind tunnel Air 47.6 1.58 11.4 1.16 1.04 29� 103 2.07

aMeasurement conditions extrapolated from the data tabulated by Keith and Bennett [36].
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spectra substantially exceed the data due to their constant rate (o�1) of roll-off while the data roll off at faster
rate, up to o�5. At low frequencies, the spectra predicted by the Chase model are higher while that predicted
by the Chase–Howe model are lower than the data (only very limited data is available at low frequencies,
e.g., Fig. 4).

At frequencies above the spectral peak, the spectra predicted by the Smol’yakov [8] model compare
reasonably well with data. However, the model’s predicted spectral peak frequency occurs at a considerably
higher frequency than that of the data, and the predicted spectral levels below the peak frequency are
significantly lower due to a larger range for the roll-off from the peak. This reflects the spectral peaks which
occur at approximately od*/UNE0.6 in the data compiled by Smol’yakov [8] in his derivation of the model.
Because the spectral peaks occur at higher frequencies, the predicted spectra in the universal range are
generally higher than the data. However, due to the offset by its faster rate of roll-off (po�1.11) from the
peak, the predicted spectra compare reasonably well with data at higher frequencies and in the upper
frequency region of the universal range.

The spectra predicted by Goody’s [9] model show good agreement with the data for all four cases, except the
over-prediction in the low-frequency region of the first underwater case (see Fig. 6). The good agreement of
the two in-air cases is no surprise, since Goody used these data to test his model. In the underwater cases, with
the exception just mentioned, the agreement is also good even though Goody did not examine these data.

Overall, the most recent model developed by Goody [9] shows the best agreement with data of all models
evaluated. This shows the gradual improvement of models over time. The newest models, such as Goody’s,
have benefited from additional information not available to the development of the earlier models.

As a check on the accuracy of the boundary layer parameters used, additional predictions were made using
a range of different values. Different parameter values not only degrade the comparison of predictions with
measured data but also make the predicted spectral peak frequency and the overall spectral levels shift away
from the measured data. Therefore, the boundary layer parameters used in this comparison are believed to be
reasonably accurate.
4. Conclusion

The results of the fluctuating wall pressure frequency spectra calculated using nine semi-empirical models
were compared for the first time to four sets of data measured at different flow conditions: in-air and in-water,
for flat and curved surfaces. The transducer size attenuation effects of the flush mounted sensors were
computed using both Corcos’s and Chase’s wavenumber-frequency spectra. Measured data shown were those
corrected by the calculated sensor size correction factors. Two sets of measured data are shown: one is
corrected using the Corcos wavenumber spectrum and the other is corrected using the Chase spectrum. The
uncorrected experimental data are also shown to indicate the amount of correction being made. In one of the
four cases, the sensor was mounted beneath an elastomer blanket. In this case, the factor for the combined
attenuations of the blanket and the sensor was used to correct the measured data.
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The comparison between data and predictions for each of the models (either agreement or disagreement) are
quite consistent for all cases evaluated. This suggests that the corrected data represent the actual point
frequency spectra reasonably well.

The most recent model published by Goody [9] provides the best overall prediction of the frequency spectra
for all cases evaluated. Goody used the Chase–Howe [16] model as the starting point for the development of
his model. One of the changes by Goody on the Chase–Howe model is to have his model follow an o�0.7

(instead of o�1) behavior in the universal range, which results in a better agreement with measured data on flat
surfaces in air and to a lesser extent cylindrical surfaces underwater. This point is also supported by the
smooth wall data of Blake [31], however the recent underwater data measured by Ciappi and Magionesi [32]
suggest an o�1 dependance. Despite this uncertainty, it appears that Goody has captured the spectral features
correctly for turbulent boundary layer flows over a wide range of Reynolds number. The readers may use the
information presented to choose a model appropriate for their specific applications.
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Appendix. A

A.1. Transmission of the normal surface traction across an elastomeric layer

The determination of the transmission of the normal surface traction across a fluid-loaded rigidly backed
elastomeric layer shown by Fig. 8 can be conveniently derived using the formalism reported by Folds and
Loggins [33], in which the state vectors of velocity and surface traction at the two free surfaces of a given
elastic layer are related as follows:

vð2Þx

vð2Þz

Zð2Þz

Zð2Þx

2
66664

3
77775eiðkx�otÞ ¼

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2
6664

3
7775

vð1Þx

vð1Þz

Zð1Þz

Zð1Þx

2
66664

3
77775eiðkx�otÞ (A.1)

where n and Z are the velocity and stress on the surfaces; the superscript, 1 or 2, indicates the surface location;
and the subscripts x and z indicate the directions of the respective quantities; k (the symbol s was used in Ref.
[33]) is the wavenumber along the x-axis. The coefficients Aij are functions of k, o, the material properties
(density, re; dilatational wave speed, cl; and shear wave speed, cs), and thickness, h, of the layer. The complete
Fig. 8. A schematic of an elastomeric layer.
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list of these coefficients can be found in Ref. [33]. Duplicating the expressions of these coefficients here is
unnecessary since they will be substituted into the appropriate equations later and reflected in a final
expression for the transmission coefficient.

Assuming Surface 1 is bounded to a rigid surface, vð1Þx ¼ vð1Þz ¼ 0, then Eq. (A.1) can be reduced to

Zð2Þz ¼ C1Zð1Þz , (A.2)

vð2Þz ¼ C2Z
ð1Þ
z , (A.3)

where C1 ¼ A33�A34A43/A44 and C2 ¼ A23�A24A43/A44. The two other expressions, for vð2Þx and Zð2Þx , as

dependent variables are not shown because they will not be used hereafter. Assuming the pressure on Surface 2

is caused by an incident velocity potential fI ¼ Be�iaf zþikx�iot of the fluid space above, Surface 2 will in general

cause a reflected potential fR ¼ Aeiaf zþikx�iot. Here we use af to designate the z-axis wavenumber in the fluid

medium and k2
þ a2f ¼ ðo=cf Þ

2, where cf is the sound speed in fluid. The amplitudes of the incident pressure

and potential at Surface 2 are related by the following expression [33]:

Pinc ¼ i
K

o

� �
q2fI

qx2
þ

q2fI

qz2

� �
z¼h

¼ �irf oB, (A.4)

where K and rf are the fluid bulk modulus and mass density, respectively. The normal surface velocity and
stress are related to the sum of the potentials, i.e., f ¼ fI+fR and therefore,

vð2Þz ¼
qf
qz

����
z¼h

¼ iaf ðA� BÞ (A.5)

and

Zð2Þz ¼ i
K

o

� �
q2f
qx2
þ

q2f
qz2

� �
z¼h

¼ �irf oðAþ BÞ. (A.6)

From Eqs. (A.2) to (A.6), the reflection coefficient A/B and subsequently the ratio (A+B)/B can be obtained.
Accordingly,

Zð2Þz

Pinc
¼

Aþ B

B
¼

2C1

C1 þ zf C2
, (A.7)

where zf ¼ rfo[(o/cf)
2
�k2]�1/2 is the fluid impedance at Surface 2. The wall pressures are presumably

measured on a rigid surface, so the wall pressure will be equal to two times the incident pressure. Substituting
Eq. (A.2) into Eq. (A.7), and replacing Pinc by 2Pinc, we have the wall pressure transmission coefficient,

t ¼
Zð1Þz

2Pinc
¼¼

1

C1 þ zf C2
. (A.8)

Substituting the coefficient Aij tabulated in Ref. [33], we have

t ¼
U cosðPÞ þ ð1� UÞ cosðQÞ

Lþ zf F
, (A.9)

where

L ¼ ½ð1� UÞ cosðPÞ � U cosðQÞ�½U cosðPÞ þ ð1� UÞ cosðQÞ� þ ½D sinðPÞ � ðs=bÞð1� UÞ sinðQÞ�2,

F ¼ �iðk=reoÞ
½ða=kÞ sinðPÞ þ ðk=bÞ sinðQÞ�½U cosðPÞ þ ð1� UÞ cosðQÞ�

�½cosðPÞ � cosðQÞ�½D sinðPÞ � ð1� UÞðk=bÞ sinðQÞ�

( )
,

D ¼ 2akc2s=o
2; U ¼ 2ðkcs=oÞ

2; a2 ¼ ðo=c‘Þ
2
� k2; b2 ¼ ðo=csÞ

2
� k2; P ¼ ah; Q ¼ bh

and cl and cs are the dilatational and shear wave speed of the solid layer, respectively.
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